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ABSTRACT
With the advent of Internet-of-Things (IoT) devices in re-
cent years, side-channel attacks have become a more rele-
vant concern for embedded systems developers than ever.
In particular, attacks abusing power analysis leakages con-
tinuously pose a significant security threat to cipher im-
plementations, as they have the potential to reveal private
keys and other secret information from the device. Since
testing for side-channel leakages can be expensive and re-
quire specialised skills, which often cannot be afforded by
IoT start-ups with limited resources, there exists a need for
user-friendly tools that can automatically emulate, identify,
and correct power analysis leakages in programs. While such
tools exist, they are far and few between, and are often con-
strained to a singular platform. To fill this need, we present
a way to expand Rosita, a code rewrite engine created by
Shelton et al. (NDSS 2021), capable of automatically elimi-
nating power analysis leakages from programs. We create
a power model for the target on-board the ChipWhisperer,
an open-source toolchain for embedded hardware security
research. We show that power traces captured using the
ChipWhisperer power model can be used and analysed by
Rosita, thus broadening its ability to correct leakages on
other platforms.

1 INTRODUCTION

Historically, side-channel attacks have existed for longer
than computers have. A classic example of a side-channel
attack predating computers is a polygraph test. Bymeasuring
and recording the blood pressure, pulse, breathing patterns,
and other physiological indicators when a series of questions
are asked, one may be able to gain insight into whether
someone is telling the truth. This is effectively equivalent to a
side-channel attack against the human brain. More generally,
by observing unintended leakages of information from a
given system, an attacker can recover secret information
otherwise unobtainable by conventional means.

In computer security, side-channel attacks exploit indirect
device signals such as cache accesses, timing information,

and in particular, power consumption. Side-channel attacks
in the form of power analysis have been proven to leak
private keys from ciphers such as AES and more [9], compro-
mising the security of devices that rely on them to protect
the data of users. With the rapid expansion of the IoT market
in the past decade, there is an ever-increasing amount of new
embedded devices being developed by startups all across the
globe, whose limited budgets are often incompatible with
the high costs of evaluation labs for assessing side-channel
leakages.

While many mitigation tools have been created for cache-
based and time-based side-channel attacks [10], there re-
mains a need for user-friendly tools capable of automatically
eliminating power analysis leakages from programs across
different hardware platforms. In general, elimination can
be achieved by first emulating the supplied program, then
detecting assembly instructions that cause power analysis
leakages using a power model or the hardware description
of the target processor [8], and rectifying the associated in-
structions such that the leak is no longer observable (through
masking) or the correlation between the leak and the secret
information is eliminated (through blinding). In 2021, Shel-
ton et al. [14] presented Rosita, a code rewrite engine that
uses an augmented version of the ELMO leakage emulator
developed by McCann et al. [10] as a basis to emulate the
micro-architectural characteristics, and subsequently iden-
tify code locations that are causing a leakage. Then, using
selected rewrite rules, Rosita is able to rewrite the code such
that the power leakage will no longer be observable by an
attacker.

1.1 Motivation

Though Rosita can automatically eliminate power analy-
sis leakages from programs, it is only able to do so on a
limited number of platforms through the ELMO* leakage
emulator. With the objective of allowing broader automatic
elimination of leakages and subsequently helping improve
the overall security of embedded hardware, we present ways
to increase the number of supported platforms on Rosita.



To achieve this, we use the ChipWhisperer, an open-source
toolchain for embedded hardware security research devel-
oped by O’Flynn and Chen [12] to capture power traces from
the ARM Cortex-M0 based STM32F030F4P6 target on-board.
The expected result of this project is a tool that needs to be
capable of three functionalities. The tool should be able to
interact with the ChipWhisperer toolchain to capture power
traces from the target board as it executes the user-supplied
program. Following on, the tool should bridge the traces to
the ELMO* leakage emulator where it can test the program
for leakages with respect to both the measured and gener-
ated power consumption through a newly created power
model for the target. Finally, the detected leakages should be
integrated into the Rosita workflow as described by Shelton
et al. [14, p. 2]. This work provides future embedded systems
developers with a user-friendly and streamlined solution to
testing products for power analysis leakages and automati-
cally eliminating such leakages before they make their way
to production.

2 BACKGROUND

In this section, we aim to provide context for the various
types of power analysis attacks commonly used against cryp-
tographic applications (Sect. 2.1), the Test Vector Leakage
Assessment methodology (Sect. 2.2), leakage emulators and
evaluation of power models (Sect. 2.3), as well as automatic
countermeasures against power analysis leakages (Sect 2.4).

2.1 Power analysis attacks

From a physics point of view, the power consumption of tran-
sistors in a processor depends on the current state they hold.
An attacker capable of observing the power consumption
over time in a cryptographic hardware device will be able
to perform what is known as a power analysis attack. There
exist many techniques in power analysis attacks. There is
simple power analysis (SPA), where an attacker visually in-
spects power traces captured from a device or the power
consumption graph plotted relative to time, such that it is
possible to identify which instructions are being executed
or loaded in the processor pipeline, based on previous pro-
filing. A more sophisticated technique is differential power
analysis (DPA), first described in 1998 by Kocher et al. [7].
The attacker collects a large number of power traces from a
device leaking the Hamming weight during cryptographic
operations. Then, using statistical analysis, the attacker de-
rives the intermediate values used in cipher implementations,
which allows the original secret keys to be recovered. Such
attacks have been demonstrated to be successful against tar-
gets ranging from smart cards [7] to IEEE 802.15.4 nodes
used in IoT devices [13].

2.2 Side-channel leakage assessment

With the threat of side-channel attacks becoming better
known among vendors in the industry sector, greater at-
tention has been put on developing standardised assessment
programs, which evaluate the presence of leakages in cryp-
tographic implementations for a given device under test.
One such methodology is called the Test Vector Leakage
Assessment (TVLA), first proposed by Goodwill et al. [6]
in 2011. The TVLA seeks to be a systematised method for
confirming and ruling out side-channel leakages of sensitive
information, while being easy-to-apply and cost-effective,
not requiring test operators to be exceptionally skilled in
performing side-channel attacks. The TVLA methodology
uses Welch’s t-test to identify statistical differences between
two sets of side-channel measurements. The test uses the
means and variances of the two distributions to derive a
statistic called the t-value. If one set of measurements were
to be taken with fixed data, and another set with random
data (a fixed-vs.-random test), a high t-value would indicate
statistical differences between the two sets, implying that the
device is emitting some form of data-dependent information
in its operation through a side-channel [6].
When assessing implementations of cryptographic algo-

rithms, there are two classes of tests to be followed: general
and specific. General tests look to detect leakages that are
functions of the input data or cipher key, while specific tests
target specific intermediate steps of the algorithm that can
be exploited to recover sensitive information, such as S-Box
accesses in AES [9, 11]. It is important to note that the t-test
statistic is used for supporting or rejecting a null hypothesis
[15]. In other words, passing the TVLA does not guarantee
resistance against all attacks, and a negative result does not
necessarily imply the absence of leakages. Similarly, a posi-
tive result in a general test does not mean the leakages are
directly and immediately exploitable, but rather it indicates
the possibility for exploitation [3]. Despite these limitations,
the confidence of the result can be improved through re-
peated testing with different data, which is why the TVLA
method has remained useful as a simple and effective first-
step evaluation tool for side-channel leakages [14].

2.3 Leakage emulators

In 2017, McCann et al. [10] proposed an emulator for power
leakages for the ARM Cortex-M0 (ELMO). By profiling and
reducing a set of 21 M0 instructions deemed relevant for
cryptographic operations into five classes, an emulator could
be modelled that provided insight into the leakage charac-
teristics of the device. Similar efforts were made by Le Corre
et al. [8] on using the HDL source code of the ARM Cortex-
M3 to infer leakage properties of each stage of the processor
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pipeline and creating the micro-architectural power simula-
tor (MAPS). Though, these emulators were shown to be inac-
curate and unable to detect all leakages. Gao and Oswald [4]
first proposed the concept of completeness for power mod-
els used in leakage emulators in 2021, whereby a model is
considered complete if and only if it captures all relevant
state information for leakage assessment. As demonstrated
in their analysis, neither emulator satisfied the completeness
test. There have also been efforts made towards improving
existing leakage emulators. In 2021, Gao et al. [5] demon-
strated that it is feasible to build more accurate emulators
by reverse-engineering the micro-architectural components
of the target processor and analysing their leakages on a
pipeline stage basis.

2.4 Automatic countermeasures

The elimination of side-channel leakages has often been an
iterative process, involving manual work between testing
the implementation for leakages, identifying the source of
the leakages, masking the leakages such that they are no
longer observable, and performing the test again to ensure
the leakage has been correctly eliminated [14]. As the loca-
tion and nature of power analysis leakages are dependent on
not only the implementation but also the micro-architecture
of the device under test [1], there currently exists no gen-
eralised or broad-spectrum countermeasure that is able to
eliminate leakages on all hardware platforms. While it is pos-
sible to manually identify instruction locations that causes
the leakage and masking it by every iteration, this method of
elimination is inefficient and demands a significant amount
of time, requiring the technician administering the evalu-
ation to be skilled in not only carrying out side-channel
attacks but also in applying leakage fixes for the specific im-
plementation. Countermeasures in the form of code rewrite
engines, such as Rosita by Shelton et al. [14], speeds up
the process significantly by removing the human factor and
automating the manual code patching that was previously
required. Though, the efficiency of this automated elimina-
tion comes at the trade-off of a limited range in supported
hardware platforms, requiring a linear regression model of
the device’s power leakage characteristics to be developed
prior to performing any testing [10].

3 METHODOLOGY

3.1 Model building process

In order to emulate leakages found on the ChipWhisperer
Nano with the ELMO emulator, we build a model of the
target’s power leakage characteristics by collecting power
traces while the device executes different combinations of

calibration instructions. The combinations include 21 instruc-
tions that the authors of ELMO consider to be of frequent use
in typical cryptographic operations, which can be divided
into five similarly-leaking instruction classes as defined by
McCann et al. [10]. Each combination contains a sequence
of three instructions, a sequence testing the movs, str, and
eors instructions would resemble the following:

1 movs r0, r0

2 movs r0, r0

3 movs r0, r0

4 movs r0, r0

5 movs r0, r0

6 movs r2, r3

7 str r5, [r4]

8 eors r6, r7

Listing 1: Example model calibration code for movs, str,
and eors instructions.

After the traces are collected, we process and trim the
traces such that they only include the portions coinciding
with our instructions of interest. Note that in Listing 1, a
series of stationary movs from have been added before the
instructions of interest as a fixed delay, this is to allow for
easier trimming later in the process. Then, the traces will be
analysed through linear regression, where the coefficients
of the data representative of the bit values in the processor’s
Arithmetic Logic Unit are extracted [14], to be used by ELMO
as a model for power consumption.

To aid in repeating the model building process, the authors
of ELMO have also provided the relevant MATLAB functions
for computing the coefficients, as well as pre-generated mod-
els of the STM32F0302 and NXP LPC1114 evaluation boards
for testing1.

3.2 Trace collection process

Power traces were collected using the scope onboard the
ChipWhisperer Nano. The collection process is separated
into two phases, a pre-capture preparation phase where all
necessary objects are generated and compiled, and a cap-
ture phase where each calibration program is flashed on
the device and traces are collected as the target processor
executes.
In the preparation phase, we first generate the assembly

instructions containing different sequence combinations for
each of the five leakage classes. As the model for each leak-
age class will be built independently and will not be merged
until the linear regression step, we split the assembly source

1Available at https://github.com/sca-research/ELMO.
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output into separate directories to improve file organisa-
tion. We then use the AS assembler under the GNU ARM
Embedded Toolchain to assemble each instruction combina-
tion along with the needed setup instructions and trigger
function calls into small object files. These object files will
be linked later with the C driver code in the capture phase.
At the end of the preparation phase, we also compile the C
driver program containing all necessary libraries, such as
SimpleSerial for communication with the target, as well as
the STM32F0 HAL driver for setting the trigger and other
low-level functionalities.

We now turn our attention to the capture phase. For each
sequence combination being tested, we copy (and overwrite
if necessary) the object file containing the current combina-
tion of instructions to the ChipWhisperer project directory.
We use the ARM toolchain’s version of gcc to link the object
under test with the driver program, and objdump to create
a hexadecimal object file that can be installed on the target
device. We then connect to the ChipWhisperer Nano using
the supplied Python module2, and install the calibration pro-
gram on the target using the built-in STM32F0 programmer.
After the program has successfully been flashed, we initialise
the capture by resetting the trigger signal and flushing the
target buffer. We arm the scope object such that capture will
begin at the first rising edge of the trigger and send a prede-
fined SimpleSerial command to the target to begin collecting
power traces on the device. The traces are then saved as
NumPy array files, which can be accessed later for the model
building step of the process.

Start of
preparation phase

Generate assembly
for calibration

Create project
directory structure

Assemble each test
combination into
separate objects

Compile C-based
driver program

Start of
capture phase

Copy object for
current combination

under test

Link driver program
with current object

Flash calibration
program onto target

Arm the scope and
begin collection

Re
pe
at

fo
ra

ll
co
m
bi
na
tio

ns

Figure 1: Preparation and capture phases of the trace col-
lection process.
2Available at https://pypi.org/project/chipwhisperer/.

3.3 Workflow integration

In the Rosita workflow, we begin with a leaky implementa-
tion of a cipher and use ELMO to simulate the power leakage
based on a model. Due to the modular design of the ELMO
emulator [2], integration of a different power model into
the Rosita workflow as defined by Shelton et al. [14] is
rather trivial. Specifically, the linear regression coefficients
obtained after the model building process can be used in the
ELMO emulator for leakage detection in the context of the
ChipWhisperer Nano with minimal configuration.We simply
place the coefficient file in the ELMO source directory and
update the path to the power model in the elmodefines.h
header file before rebuilding the binary.
As the leakage analysis step in the Rosita workflow is

entirely delegated to the ELMO emulator, a change in the
power model, in theory, should not affect Rosita’s ability
to eliminate leakages through code rewrites. Though, the
overall reduction in leakages may suffer if a low-quality
model that fails to accurately reflect the power characteristics
of the device were to be used, as such a model may lead
to incomplete detection of leakages or false positives (i.e.
incorrectly detecting leakages when there are none).

4 EXPERIMENTAL SETUP

4.1 Understanding the scope trigger

When performing power analysis attacks with a conven-
tional oscilloscope, triggers are generally used for synchro-
nising the voltage and time data, as well as for signalling
the start and completion of a power trace. However, this is
not the case with the ChipWhisperer Nano. Early testing
with the device showed that while the trigger can be set
to high to indicate the start of a trace by calling the built-
in trigger_high(), the function trigger_low() does not
stop the capture as expected and cannot be used to control
the completion of a trace. In addition to this limitation, there
currently exists no function for viewing the waveform of the
trigger channel.
To better understand the behaviour of the trigger on the

ChipWhisperer Nano, two probing wires were soldered each
onto the GPIO7 pin (mislabelled as GPIO4 by the device
manufacturer), which is used by the scope as the trigger
signal, and ground pin on the target portion of the device.
This allows us to observe the trigger channel on another
oscilloscope with higher resolution and bandwidth. To in-
vestigate the trigger behaviour, we use a PicoScope 6404D
with a Pico Technology TA046 differential probe connected
to the oscilloscope, and monitor the signal as a test program
with a known trigger pattern was run on the target.
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Figure 2: Trigger testing setup.

It became understood that, due to technical and likely cost
constraints of the ChipWhisperer Nano, the trigger function
defined in the scope object was designed to behave in a
more unidirectional manner than conventional oscilloscope
triggers. As normal, the scope will start the trace capture
upon detecting a rising edge in the trigger signal. However,
the trace will continue to be captured and only stop when
the sample buffer reaches its maximum size as defined by
the user. Hence, it is currently impossible to control the
completion of a trace using a trigger signal.
With this limitation in mind, the correct order of using

the trigger function on the ChipWhisperer Nano should be
as follows:

1 trigger_setup ()

2 <no-op delay >

3 trigger_low ()

4 trigger_high ()

5 <instructions of interest >

6 trigger_low ()

Listing 2: Example code demonstrating the trigger function
on the ChipWhisperer.

A delay is inserted between trigger_setup() and the
start of the capture to allow a sufficient buffer such that the
rising edge will consistently occur after all setup instructions
have been completed. Without the delay, the scope may be
unable to detect the rising edge and will return a timeout as
a result of not receiving the signal to start the trace, causing
the capture to fail entirely.

4.2 Capturing traces

To capture the calibration traces needed for building the
power model for the ChipWhisperer Nano, we use the scope
onboard the device to measure the power consumption of
the STM32F030F4P6 target. Due to the synchronous nature
of the ChipWhisperer scope [12], the required sampling rate
is greatly reduced and high-quality traces can be obtained
with the clock rate and sampling rate set at a 1:1 ratio. We
sample every 133.3 ns at a clock rate of 7.5 MHz, with the
sample buffer set to 100000 samples or the maximum size
supported by the memory.
We perform the trace capture using version 5.6.1 of the

ChipWhisperer Python module, on a ChipWhisperer Nano
with firmware version 0.50.0, which supports improved Sim-
pleSerial communication with the target. To ensure the pro-
duced trace is as close to the start of the instruction of interest
as possible (excluding delay and setup), we also make a few
modifications to the trigger setup shown in Listing 2, by
directly incorporating the trigger_high() call adjacent to
the sequence combination in the linked object, as so:

1 push {r0-r3}

2 bl trigger_high // Start of trace

3 pop {r0-r3}

4 mov r0, r9

5 movs r0, r0

6 movs r0, r0

7 str r5, [r0,#8]

8 movs r0, r5

9 eors r0, r5

10 mov r0, r10

11 ldr r1, [r0,#24] // ldr state set

12 movs r1, #0

13 movs r0, r0

14 movs r0, r0

15 movs r0, r0

16 movs r0, r0

17 movs r0, r0

18 eors r2, r3 // Insts under test

19 eors r4, r5

20 str r7, [r6]

21 mov r7, r7 // Delay

22 mov r7, r7

23 mov r7, r7

24 push {r0-r3}

25 bl trigger_low // End of trace

26 pop {r0-r3}

Listing 3: Example assembly code demonstrating a closer
trigger setup.
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4.3 Optimising the capture

The trace collection process initially took over on average
1 hour and 30 minutes to complete for all five instruction
classes. While not considered excessively time-consuming
at first, the long capturing time quickly became a hindrance
to the development process of the model, as any changes
made to the calibration code would imply the capture would
have to be redone from the beginning. To reduce the time
spent on capturing, we first optimise the capture phase of
the process by removing unused libraries and other residual
ChipWhisperer project template files from the calibration
program. This greatly lowered the complexity of the hexa-
decimal object file, speeding up the compilation step. The
program’s smaller size also subsequently sped up the flash-
ing step, as the number of bytes required to be sent to the
target is less, which adds to a total reduction in capture time
of approximately 40 minutes, or a 44.4% decrease.

The process can be further optimised by moving the link-
ing and flashing steps from the capture phase to the prepa-
ration phase. After profiling the automation code, it quickly
became known that the most time-consuming step of the
process is on programming the target with a newly linked
hexadecimal object file, which from empirical testing, took
on average 3.5 seconds per iteration to complete. To optimise
this step, we compile the object file with all of the required
combinations placed in separate functions before the capture
phase and call different functions at run-time by communi-
cating with the target using SimpleSerial. The effect of this is,
since separate object files for each combination are no longer
used, the device will only need to be programmed once, as
opposed to 125 times per instruction class previously. By
doing so, the total capture time can be massively reduced
from taking 50 minutes to approximately only 14 minutes,
leading to about a 72% decrease.

5 RESULTS

We now focus our attention on the experimental results
obtained after performing the trace collection process out-
lined above, and the subsequent linear regression analysis
for model building as detailed in Sect. 3.1 and by McCann
et al. [10].
We first discuss the traces collected and the relation be-

tween the calibrating instruction and the specific location
in the trace. We then present the leakages detected from a
masked implementation of AES using the produced power
model, comparing themwith those detected using the ELMO-
default STM32F0 Discovery Board power model. We then
show that the detected leakages from our power model can
be eliminated using the Rosita code rewrite engine, resulting
in a fixed implementation of the cipher.

120 130 140 150 160 170 180
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−0.1

0.0

0.1
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lta
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dr
op

(m
V)

Figure 3: Power trace of calibration test 0 for ldr, with
the instructions of interest highlighted.

The region containing the instructions of interest is high-
lighted as red in the figure above. As the synchronous design
of the ChipWhisperer hardware allows traces to be captured
at a clock and sampling frequency ratio of 1:1, we can directly
equate the number of samples in the trace with the cycle
count after the rising edge of the trigger signal. With this
correlation in mind, we can observe that for this particular
experimental setup, the calibration sequence of test 0 begins
at cycle 156 and ends at cycle 158.
As the only differing instructions after setting the state

for each test are the three calibration instructions, we can
further confirm our location of instructions of interest by
comparing the pattern of the voltage drop with another trace
under the same instruction class. If the highlighted region
were to be representative of some other instructions in the
calibration process that are constant for each test, we should
observe no change in trace pattern. To illustrate this, we now
look at the trace of a more distanced test 38 for ldr.
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Figure 4: Power trace of calibration test 38 for ldr, with
the instructions of interest highlighted.
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We observe a difference in the power consumption be-
tween the two tests due to different calibration instructions
between the two tests. In this case, test 0 had a sequence of
combination eors-eors-eors, while test 38 had the combi-
nation lsls-str-ldr. With these three samples being the
only major difference between the two traces, we are able to
confirm that the highlighted region does correctly point to
our instructions of interest.
Following the model building steps as described by Mc-

Cann et al. [10], we compress the relevant power consump-
tion values in the region to derive a single value for each
test. These values are then packaged with the random inputs
sent via SimpleSerial during the capture phase into a .mat
binary data file. Using MATLAB, we perform the linear re-
gression analysis on the compressed trace data and derive the
coefficients, which can be exported into the desired model
format for leakage emulation in ELMO and subsequently
elimination with Rosita.

To evaluate the quality of the newly produced model, we
compare the leakages detected from a masked implementa-
tion of AES (fixed-input) [14] using the ChipWhisperer Nano
model, against those detected by the default ELMOmodel de-
rived from the STM32F0 (30R8T6) Discovery Board. We will
first focus on the t-test values emitted from Rosita using the
default model. Note that leakages are defined as instructions
corresponding to t-values exceeding the standard threshold
of ±4.5 used in TVLA [6].
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Figure 5: Leakage from masked implementation of AES
using STM32F0 Discovery Board power model.

In the first round detection (i.e. before Rosita does any
code rewrites) performed using the STM32F0 Discovery
Board power model, we notice significant spikes in the t-test
value starting from approximately cycle 465. There also exist
other shorter span spikes surrounding cycles 770, 840, and
940. We keep these potential leakage locations in mind as we
move on to those detected using the ChipWhisperer Nano
power model for comparison.
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Figure 6: Leakage from masked implementation of AES
using ChipWhisperer Nano power model.

From the figure above, we observe that ELMO was able
to correctly emulate the same major leakages starting from
cycle 465 using the ChipWhisperer Nano powermodel. It also
correctly recognised the same leakage from about cycle 940.
However, it failed to detect a few leakages near the middle
of the round and is less sensitive to leakages with smaller
data dependency when compared to the default model.

We then use Rosita to eliminate the above leakages. After
three iterations of leakage detection and code rewrites, both
implementations were able to be fixed with zero leakages
being detected by each power model. We first present the
t-test values from the fixed implementation of AES after the
elimination process.
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Figure 7: Fixed implementation of AES using STM32F0
Discovery Board power model.

As seen in the figure above, the t-test values remained
within the threshold of ±4.5. While this does not imply the
complete absence of leakages, this does suggest the previ-
ously detected leakages with the default model are now elim-
inated to a sufficient degree.
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Figure 8: Fixed implementation of AES using ChipWhis-
perer Nano power model.

A similar case can be seen with the fixed implementation
using the ChipWhisper Nano power model, indicating the
successful elimination of the detected leakages.
As it stands currently, much remains to be done before

the power model can be used for proper leakage mitigation.
For one, the complexity and lengthiness of the trace col-
lection process heavily limit the level of input randomness,
which is necessary for an accurate power model. This can
be remedied in the future with further optimisation of the
collection process, specifically by removing the need to link
and flash the calibration library for each test combination,
thus increasing the number of traces per combination that
can be feasibly captured within a set time frame.
In addition to the low input randomness, there are also

data accuracy issues in the model building steps. Specifi-
cally, the specific points of interest containing the power
consumption of calibration instructions on the traces may
have not been trimmed correctly. This is led by the random
input during calibration causing additional CPU cycles to
be added when input-dependent instructions were being ex-
ecuted, prior to the three instructions of interest. In other
words, some of the power consumption data used in the re-
gression would have been incorrectly pointing to the no-op
delay instructions instead, contributing to the overall error
of the model.

6 CONCLUSION

In this work, we explored the possibility of expanding sup-
port for the Rosita code rewrite engine to ChipWhisperer
Nano. By capturing power traces from the target device un-
der test as sequences of calibration instructions are executed,
then performing linear regression analysis on the collected
traces, we built a power model for the power leakage char-
acteristics of ChipWhisperer Nano.

Despite the accuracy limitations of the produced model,
we demonstrated that it is possible to integrate a model of
different microarchitecture into the Rosita workflow. More-
over, we showed that the power model we produced has been
successful in identifying the main leakages in a masked im-
plementation of AES, which could be eliminated by Rosita
in three iterations to produce a fixed implementation of the
cipher. While the trace collection methodology could be im-
proved to allow for more complete mitigation of leakages, a
better understanding of the ChipWhisperer capture process
and its trigger functions has also been gained as a result of
performing the model calibration, building upon the future
work towards broadened automatic elimination of power
leakages.

7 AVAILABILITY

A release of RositaWhisperer, containing the ChipWhisperer
Nano power model built in this paper, the ChipWhisperer
project files, plus all relevant trace collection and analysis
scripts used can be downloaded from: https://github.com/
SamillWong/RositaWhisperer.
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